Characterization of Paracompactness in T3 Space/Lemma 16
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $X$ be a set with well-ordering $\preccurlyeq$ on $X$.
Let $X \times X$ denote the cartesian product of $X$ with itself.
Let $\sequence{V_n}_{n \in \N}$ be a sequence of subsets of $X \times X$ containing the diagonal $\Delta_X$ of $X \times X$:
- $\forall n \in \N_{> 0}, V_n$ is symmetric as a relation on $X \times X$
- $\forall n \in \N_{> 0}$, the composite relation $V_n \circ V_n$ is a subset of $V_{n - 1}$, that is, $V_n \circ V_n \subseteq V_{n - 1}$
For all $n \in \N_{> 0}$, let:
- $U_n = V_n \circ V_{n - 1}, \circ \cdots \circ V_1$
For each $n \in \N_{> 0}, x \in X$, let:
- $\map {A_n} x = \map {U_n} x \setminus \ds \bigcup_{y \preccurlyeq x, y \ne x} \map {U_{n + 1}} y$
Then:
- $\forall n \in \N_{> 0}, \forall y, z \in X : y \ne z \leadsto \map {A_n} z \cap V_{n+1} \sqbrk {\map {A_n} y} = \O$
Proof
Let $n \in \N_{> 0}$.
Let $y, z \in X : y \ne z$.
Case 1: $y \preccurlyeq z$
We have:
\(\ds V_{n + 1} \sqbrk {\map {A_n} y}\) | \(=\) | \(\ds V_{n + 1} \sqbrk {\map {U_n} y \setminus \bigcup_{w \preccurlyeq y, w \ne y} \map {U_{n + 1} } w}\) | Definition of $\map {A_n} y$ | |||||||||||
\(\ds \) | \(\subseteq\) | \(\ds V_{n + 1} \sqbrk {\map {U_n} y}\) | Set Difference is Subset and Image of Subset under Relation is Subset of Image | |||||||||||
\(\ds \) | \(\subseteq\) | \(\ds \map {\paren{V_{n + 1} \circ U_n } } y\) | Image of Element under Composite Relation with Common Codomain and Domain | |||||||||||
\(\ds \) | \(\subseteq\) | \(\ds \map {U_{n + 1} } y\) | Definition of $U_{n + 1}$ | |||||||||||
\(\ds \) | \(\subseteq\) | \(\ds \bigcup_{w \preccurlyeq z, w \ne z} \map {U_{n + 1} } w\) | Set is Subset of Union |
From Set Intersection Preserves Subsets:
\(\ds \map {A_n} z \cap V_{n + 1} \sqbrk {\map {A_n} y}\) | \(\subseteq\) | \(\ds \map {A_n} z \cap \bigcup_{w \preccurlyeq z, w \ne z} \map {U_{n + 1} } w\) |
From Set Difference Intersection with Second Set is Empty Set:
\(\ds \map {A_n} z \cap \bigcup_{w \preccurlyeq z, w \ne z} \map {U_{n + 1} } w\) | \(=\) | \(\ds \O\) |
From Intersection is Empty Implies Intersection of Subsets is Empty:
\(\ds \map {A_n} z \cap V_{n + 1} \sqbrk {\map {A_n} y}\) | \(=\) | \(\ds \O\) |
$\Box$
Case 2: $z \preccurlyeq y$
Applying the same argument used in Case 1 with $y$ and $z$ swapped around:
- $(1):\quad\map {A_n} y \cap V_{n + 1} \sqbrk {\map {A_n} z} = \O$
We have:
\(\ds V_{n + 1} \sqbrk{\map {A_n} z \cap V_{n + 1} \sqbrk {\map {A_n} y} }\) | \(\subseteq\) | \(\ds V_{n + 1} \sqbrk {\map {A_n} z} \cap V_{n + 1} \sqbrk {V_{n + 1} \sqbrk {\map {A_n} y} }\) | Image of Intersection under Mapping | |||||||||||
\(\ds \) | \(=\) | \(\ds V_{n + 1} \sqbrk {\map {A_n} z} \cap V_{n + 1} \sqbrk {V_{n + 1}^{-1} \sqbrk {\map {A_n} y} }\) | Definition of Symmetric Relation | |||||||||||
\(\ds \) | \(=\) | \(\ds V_{n + 1} \sqbrk {\map {A_n} z} \cap \paren {V_{n + 1} \circ V_{n + 1}^{-1} } \sqbrk {\map {A_n} y}\) | Image of Element under Composite Relation with Common Codomain and Domain | |||||||||||
\(\ds \) | \(\subseteq\) | \(\ds V_{n + 1} \sqbrk {\map {A_n} z} \cap \map {A_n} y\) | Image of Preimage under Relation is Subset | |||||||||||
\(\ds \) | \(=\) | \(\ds \O\) | From Case $(1)$ above |
Hence:
- $V_{n + 1} \sqbrk{\map {A_n} z \cap V_{n + 1} \sqbrk {\map {A_n} y} } = \O$
From Image under Left-Total Relation is Empty iff Subset is Empty:
- $\map {A_n} z \cap V_{n + 1} \sqbrk {\map {A_n} y} = \O$
$\Box$
In either case, we have:
- $\map {A_n} z \cap V_{n+1} \sqbrk {\map {A_n} y} = \O$
Since $n$, $y$ and $z$ were arbitrary, we have:
- $\forall n \in \N_{> 0}, \forall y, z \in X : y \ne z \leadsto \map {A_n} z \cap V_{n+1} \sqbrk {\map {A_n} y} = \O$
$\blacksquare$