Chinese Remainder Theorem/Examples/x = 2 mod 3, 3 mod 5, 2 mod 7

From ProofWiki
Jump to navigation Jump to search

Example of use of Chinese Remainder Theorem

Consider the system of simultaneous linear congruences:

\(\ds x\) \(\equiv\) \(\ds 2\) \(\ds \pmod 3\)
\(\ds x\) \(\equiv\) \(\ds 3\) \(\ds \pmod 5\)
\(\ds x\) \(\equiv\) \(\ds 2\) \(\ds \pmod 7\)

Then $x \equiv 23 \pmod {105}$


Proof

Using Solution to Chinese Remainder Theorem:

\(\ds N\) \(=\) \(\ds 3 \times 5 \times 7\) \(\ds = 105\)
\(\ds y_1\) \(=\) \(\ds \dfrac {3 \times 5 \times 7} 3\) \(\ds = 35\)
\(\ds y_2\) \(=\) \(\ds \dfrac {3 \times 5 \times 7} 5\) \(\ds = 21\)
\(\ds y_3\) \(=\) \(\ds \dfrac {3 \times 5 \times 7} 7\) \(\ds = 15\)


We require to find $z_1$, $z_2$ and $z_3$ such that:

\(\ds 35 z_1\) \(\equiv\) \(\ds 1\) \(\ds \pmod 3\)
\(\ds 21 z_2\) \(\equiv\) \(\ds 1\) \(\ds \pmod 5\)
\(\ds 15 z_3\) \(\equiv\) \(\ds 1\) \(\ds \pmod 7\)


Thus:

\(\ds 35\) \(=\) \(\ds 11 \times 3 + 2\)
\(\ds 3\) \(=\) \(\ds 2 \times 1 + 1\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(=\) \(\ds 3 - 2\)
\(\ds \) \(=\) \(\ds 3 - \paren {35 - 3 \times 11}\)
\(\ds \) \(=\) \(\ds -1 \times 35 + 3 \times 12\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds -1 \times 35\) \(\ds \pmod 3\)
\(\ds \) \(\equiv\) \(\ds \paren {-1 + 3} \times 35\) \(\ds \pmod 3\)
\(\ds \) \(\equiv\) \(\ds 2 \times 35\) \(\ds \pmod 3\)
\(\ds \leadsto \ \ \) \(\ds z_1\) \(=\) \(\ds 2\)


\(\ds 21\) \(=\) \(\ds 4 \times 5 + 1\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(=\) \(\ds 21 - 4 \times 5\)
\(\ds \) \(=\) \(\ds \paren {-4} \times 5 + 21\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds 1 \times 21\) \(\ds \pmod 5\)
\(\ds \leadsto \ \ \) \(\ds z_2\) \(=\) \(\ds 1\)


\(\ds 15\) \(=\) \(\ds 2 \times 7 + 1\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(=\) \(\ds 15 - 2 \times 7\)
\(\ds \) \(=\) \(\ds \paren {-2} \times 7 + 15\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds 1 \times 15\) \(\ds \pmod 7\)
\(\ds \leadsto \ \ \) \(\ds z_3\) \(=\) \(\ds 1\)

Then:

\(\ds x\) \(=\) \(\ds \sum_{i \mathop = 1}^3 z_i y_i b_i\)
\(\ds \) \(=\) \(\ds 2 \times 35 \times 2 + 1 \times 21 \times 1 + 1 \times 15 \times 1\)
\(\ds \) \(=\) \(\ds 233\)
\(\ds \) \(=\) \(\ds 2 \times 105 + 23\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\equiv\) \(\ds 23\) \(\ds \pmod {105}\)

$\blacksquare$


Also see


Sources