Cofactor/Examples/Arbitrary Example 2
Jump to navigation
Jump to search
Example of Cofactor
Let $D$ be the determinant defined as:
$\quad D = \begin {vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end {vmatrix}$
Then the cofactor of $a_{2 1}$ is defined as:
\(\ds A_{21}\) | \(=\) | \(\ds \paren {-1}^3 D_{21}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-1}^3 \begin {vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end {vmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {a_{12} a_{33} - a_{13} a_{32} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a_{13} a_{32} - a_{12} a_{33}\) |
Sources
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): cofactor
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): cofactor