# Combination Theorem for Continuous Functions/Complex

Jump to navigation
Jump to search

## Theorem

Let $\C$ denote the complex numbers.

Let $f$ and $g$ be complex functions which are continuous on an open subset $S \subseteq \C$.

Let $\lambda, \mu \in \C$ be arbitrary complex numbers.

Then the following results hold:

### Sum Rule

- $f + g$ is ā€ˇcontinuous on $S$.

### Multiple Rule

- $\lambda f$ is continuous on $S$.

### Combined Sum Rule

- $\lambda f + \mu g$ is continuous on $S$.

### Product Rule

- $f g$ is continuous on $S$

### Quotient Rule

- $\dfrac f g$ is continuous on $S \setminus \set {z \in S: \map g z = 0}$

that is, on all the points $z$ of $S$ where $\map g z \ne 0$.

## Also see

## Sources

- 1953: Walter Rudin:
*Principles of Mathematical Analysis*... (previous): $4.9$