Combination Theorem for Limits of Mappings/Metric Space
Jump to navigation
Jump to search
Theorem
Let $M = \struct {A, d}$ be a metric space.
Let $\R$ denote the real numbers.
Let $f: A \to \R$ and $g: A \to \R$ be real-valued functions defined on $A$, except possibly at the point $a \in A$.
Let $f$ and $g$ tend to the following limits:
- $\ds \lim_{x \mathop \to a} \map f x = l$
- $\ds \lim_{x \mathop \to a} \map g x = m$
Let $\lambda, \mu \in \R$ be arbitrary real numbers.
Then the following results hold:
Sum Rule
- $\ds \lim_{x \mathop \to a} \paren {\map f x + \map g x} = l + m$
Multiple Rule
- $\ds \lim_{x \mathop \to a} \lambda \map f x = \lambda l$
Product Rule
- $\ds \lim_{x \mathop \to a} \paren {\map f x \map g x} = l m$
Quotient Rule
- $\ds \lim_{x \mathop \to a} \frac {\map f x} {\map g x} = \frac l m$
provided that $m \ne 0$.