Combination of Solutions to Non-Homogeneous LSOODE with same Homogeneous Part
Jump to navigation
Jump to search
Theorem
Let $\map {y_1} x$ be a particular solution of the linear second order ODE:
- $(1): \quad y' ' + \map P x y' + \map Q x y = \map {R_1} x$
Let $\map {y_2} x$ be a particular solution of the linear second order ODE:
- $(2): \quad y' ' + \map P x y' + \map Q x y = \map {R_2} x$
Then $\map y x = \map {y_1} x + \map {y_2} x$ is a particular solution of the linear second order ODE:
- $(3): \quad y' ' + \map P x y' + \map Q x y = \map {R_1} x + \map {R_2} x$
Proof
\(\text {(4)}: \quad\) | \(\ds {y_1}' ' + \map P x {y_1}' + \map Q x y_1\) | \(=\) | \(\ds \map {R_1} x\) | as $y_1$ is a particular solution to $(1)$ | ||||||||||
\(\text {(5)}: \quad\) | \(\ds {y_2}' ' + \map P x {y_2}' + \map Q x y_2\) | \(=\) | \(\ds \map {R_2} x\) | as $y_2$ is a particular solution to $(2)$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren { {y_1}' ' + {y_2}' '} + \map P x \paren { {y_1}' + {y_2}'} + \map Q x \paren {y_1 + y_2}\) | \(=\) | \(\ds \map {R_1} x + \map {R_2} x\) | adding $(4)$ and $(5)$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {y_1 + y_2}' ' + \map P x \paren {y_1 + y_2}' + \map Q x \paren {y_1 + y_2}\) | \(=\) | \(\ds \map {R_1} x + \map {R_2} x\) | Linear Combination of Derivatives |
Hence the result.
$\blacksquare$
Sources
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $\S 3.18$: Problem $3$