Combination of Solutions to Non-Homogeneous LSOODE with same Homogeneous Part

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map {y_1} x$ be a particular solution of the linear second order ODE:

$(1): \quad y + \map P x y' + \map Q x y = \map {R_1} x$

Let $\map {y_2} x$ be a particular solution of the linear second order ODE:

$(2): \quad y + \map P x y' + \map Q x y = \map {R_2} x$


Then $\map y x = \map {y_1} x + \map {y_2} x$ is a particular solution of the linear second order ODE:

$(3): \quad y + \map P x y' + \map Q x y = \map {R_1} x + \map {R_2} x$


Proof

\(\text {(4)}: \quad\) \(\ds {y_1} + \map P x {y_1}' + \map Q x y_1\) \(=\) \(\ds \map {R_1} x\) as $y_1$ is a particular solution to $(1)$
\(\text {(5)}: \quad\) \(\ds {y_2} + \map P x {y_2}' + \map Q x y_2\) \(=\) \(\ds \map {R_2} x\) as $y_2$ is a particular solution to $(2)$
\(\ds \leadsto \ \ \) \(\ds \paren { {y_1} + {y_2}} + \map P x \paren { {y_1}' + {y_2}'} + \map Q x \paren {y_1 + y_2}\) \(=\) \(\ds \map {R_1} x + \map {R_2} x\) adding $(4)$ and $(5)$
\(\ds \leadsto \ \ \) \(\ds \paren {y_1 + y_2} + \map P x \paren {y_1 + y_2}' + \map Q x \paren {y_1 + y_2}\) \(=\) \(\ds \map {R_1} x + \map {R_2} x\) Linear Combination of Derivatives

Hence the result.

$\blacksquare$


Sources