Common Divisor Divides Integer Combination/General Result
Theorem
Let $c$ be a common divisor of a set of integers $A := \set {a_1, a_2, \dotsc, a_n}$.
That is:
- $\forall x \in A: c \divides x$
Then $c$ divides any integer combination of elements of $A$:
- $\forall x_1, x_2, \dotsc, x_n \in \Z: c \divides \paren {a_1 x_2 + a_2 x_2 + \dotsb + a_n x_n}$
Proof
The proof proceeds by induction.
For all $n \in \Z_{\ge 2}$, let $\map P n$ be the proposition:
- $\forall x \in \set {a_1, a_2, \dotsc, a_n}: c \divides x \implies \forall x_1, x_2, \dotsc, x_n \in \Z: c \divides \paren {a_1 x_2 + a_2 x_2 + \dotsb + a_n x_n}$
Basis for the Induction
$\map P 2$ is the case:
- $\forall x \in \set {a_1, a_2}: c \divides x \implies \forall x_1, x_2 \in \Z: c \divides \paren {a_1 x_2 + a_2 x_2}$
This is demonstrated to be true in Common Divisor Divides Integer Combination.
Thus $\map P 2$ is seen to hold.
This is the basis for the induction.
Induction Hypothesis
Now it needs to be shown that if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.
So this is the induction hypothesis:
- $\forall x \in \set {a_1, a_2, \dotsc, a_k}: c \divides x \implies \forall x_1, x_2, \dotsc, x_k \in \Z: c \divides \paren {a_1 x_2 + a_2 x_2 + \dotsb + a_k x_k}$
from which it is to be shown that:
- $\forall x \in \set {a_1, a_2, \dotsc, a_k, a_{k + 1} }: c \divides x \implies \forall x_1, x_2, \dotsc, x_k, x_{k + 1} \in \Z: c \divides \paren {a_1 x_2 + a_2 x_2 + \dotsb + a_k x_k + a_{k + 1} x_{k + 1} }$
Induction Step
This is the induction step:
Let :
- $\forall x \in \set {a_1, a_2, \dotsc, a_k, a_{k + 1} }: c \divides x$
We have that:
- $c \divides a_{k + 1} \implies \forall x_{k + 1} \in \Z: c \divides a_{k + 1} x_{k + 1}$
and we have that:
- $\forall x \in \set {a_1, a_2, \dotsc, a_k}: c \divides x \implies \forall x_1, x_2, \dotsc, x_k \in \Z: c \divides \paren {a_1 x_2 + a_2 x_2 + \dotsb + a_k x_k}$
Let $x_1, x_2, \dotsc, x_k \in \Z$ be arbitrary.
Let $d = a_1 x_2 + a_2 x_2 + \dotsb + a_k x_k$.
Then:
\(\ds c\) | \(\divides\) | \(\ds cd\) | ||||||||||||
\(\, \ds \land \, \) | \(\ds c\) | \(\divides\) | \(\ds a_{k + 1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds c\) | \(\divides\) | \(\ds \paren {1 \times d + x_{k + 1} a_{k + 1} }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a_1 x_2 + a_2 x_2 + \dotsb + a_k x_k + a_{k + 1} x_{k + 1} }\) |
But $x_1, x_2, \dotsc, x_k \in \Z$ are arbitrary, and so:
- $\forall x \in \set {a_1, a_2, \dotsc, a_k, a_{k + 1} }: c \divides x \implies \forall x_1, x_2, \dotsc, x_k, x_{k + 1} \in \Z: c \divides \paren {a_1 x_2 + a_2 x_2 + \dotsb + a_k x_k + a_{k + 1} x_{k + 1} }$
So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\forall n \in \Z_{\ge 2}: \forall x \in \set {a_1, a_2, \dotsc, a_n}: c \divides x \implies \forall x_1, x_2, \dotsc, x_n \in \Z: c \divides \paren {a_1 x_2 + a_2 x_2 + \dotsb + a_n x_n}$
$\blacksquare$
Sources
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $2$: Divisibility Theory in the Integers: $2.2$ The Greatest Common Divisor