Complement of Reflexive Relation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR \subseteq S \times S$ be a relation.

Then $\RR$ is reflexive if and only if its complement $\relcomp {S \times S} \RR \subseteq S \times S$ is antireflexive.

Likewise, $\RR$ is antireflexive if and only if its complement $\relcomp {S \times S} \RR \subseteq S \times S$ is reflexive.


Proof

Let $\RR \subseteq S \times T$ be reflexive.

Then:

$\forall x \in S: \tuple {x, x} \in \RR$

By the definition of complement of $\RR$:

$\tuple {x, y} \in \RR \implies \tuple {x, y} \notin \relcomp {S \times S} \RR$

The same applies to $\tuple {x, x}$, and thus:

$\forall x \in S: \tuple {x, x} \notin \relcomp {S \times S} \RR$

Thus $\relcomp {S \times S} \RR$ is antireflexive.


Similarly, by definition:

$\forall x \in S: \tuple {x, x} \notin \RR \implies \neg \tuple {x, x} \notin \relcomp {S \times S} \RR$

By Double Negation it follows that:

$\tuple {x, x} \in \relcomp {S \times S} \RR$


The converses of these results follow from the fact that:

$\relcomp {S \times S} {\relcomp {S \times S} \RR} = \RR$

by Relative Complement of Relative Complement.

$\blacksquare$