Complex-Differentiable Function is Continuous/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f: D \to \C$ be a complex function, where $D \subseteq \C$ is an open set.

Let $f$ be complex-differentiable at $a \in D$.


Then $f$ is continuous at $a$.


Proof

For each $z \in D$:

\(\ds \lim_{w \mathop \to z} \map f w\) \(=\) \(\ds \map f z + \lim_{w \mathop \to z} \paren {\map f w - \map f z}\) Sum Rule for Limits of Complex Functions
\(\ds \) \(=\) \(\ds \map f z + \lim_{w \mathop \to z} \paren {\frac {\map f w - \map f z} {w - z} \paren {w - z} }\)
\(\ds \) \(=\) \(\ds \map f z + \lim_{w \mathop \to z} \frac {\map f w - \map f z} {w - z} \lim_{w \mathop \to z} \paren {w - z}\) Product Rule for Limits of Complex Functions
\(\ds \) \(=\) \(\ds \map f z + \map {f'} z \cdot 0\) Definition of Complex-Differentiable Function
\(\ds \) \(=\) \(\ds \map f z\)


$\blacksquare$