Complex Conjugation is Involution
Jump to navigation
Jump to search
Theorem
Let $z = x + i y$ be a complex number.
Let $\overline z$ denote the complex conjugate of $z$.
Then the operation of complex conjugation is an involution:
- $\overline {\paren {\overline z} } = z$
Proof
\(\ds \overline {\paren {\overline z} }\) | \(=\) | \(\ds \overline {\paren {\overline {x + i y} } }\) | Definition of $z$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \overline {x - i y}\) | Definition of Complex Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds x + i y\) | Definition of Complex Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds z\) | Definition of $z$ |
$\blacksquare$
Sources
- 1990: H.A. Priestley: Introduction to Complex Analysis (revised ed.) ... (previous) ... (next): $1$ The complex plane: Complex numbers $\S 1.3$ Complex conjugation: $(1)$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): conjugate (of a complex number)