Composition of Direct Sums of Bounded Linear Operators on Hilbert Space
Theorem
Let $\GF \in \set {\R, \C}$.
Let $\sequence {\family {\HH_i, \innerprod \cdot \cdot_i} }_{i \mathop \in I}$ be a $I$-indexed family of Hilbert spaces over $\GF$.
For each $i \in I$, let $T_i : \HH_i \to \HH_i$ and $S_i : \HH_i \to \HH_i$ be bounded linear operators.
Suppose that:
- $\ds \sup_{i \mathop \in I} \norm {T_i}_{\map B {\HH_i} } < \infty$
and:
- $\ds \sup_{i \mathop \in I} \norm {S_i}_{\map B {\HH_i} } < \infty$
where $\norm {\, \cdot \,}_{\map B {\HH_i} }$ is the norm of a bounded linear operator on $\HH_i$.
Let:
- $\ds \HH = \bigoplus_{i \mathop \in I} \HH_i$
be the Hilbert space direct sum of $\sequence {\family {\HH_i, \innerprod \cdot \cdot_i} }_{i \mathop \in I}$ with inner product $\innerprod \cdot \cdot$ and norm $\norm {\, \cdot \,}$.
Let:
- $\ds T = \bigoplus_{i \mathop \in I} T_i$
- $\ds S = \bigoplus_{i \mathop \in I} S_i$
- $\ds \bigoplus_{i \mathop \in I} T_i S_i$
be the direct sum of $\family {T_i}_{i \mathop \in I}$, $\family {S_i}_{i \mathop \in I}$ and $\family {T_i S_i}_{i \mathop \in I}$ respectively.
Then we have:
- $\ds T S = \bigoplus_{i \mathop \in I} T_i S_i$
That is:
- $\ds \paren {\bigoplus_{i \mathop \in I} T_i} \paren {\bigoplus_{i \mathop \in I} S_i} = \bigoplus_{i \mathop \in I} T_i S_i$
Proof
From Norm on Bounded Linear Transformation is Submultiplicative we have:
\(\ds \norm {T_i S_i}_{\map B {\HH_i} }\) | \(\le\) | \(\ds \norm {T_i}_{\map B {\HH_i} } \norm {S_i}_{\map B {\HH_i} }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \paren {\sup_{i \mathop \in I} \norm {T_i}_{\map B {\HH_i} } } \paren {\sup_{i \mathop \in I} \norm {S_i}_{\map B {\HH_i} } }\) |
Hence we have:
- $\ds \sup_{i \mathop \in I} \norm {T_i S_i}_{\map B {\HH_i} } \le \paren {\sup_{i \mathop \in I} \norm {T_i}_{\map B {\HH_i} } } \paren {\sup_{i \mathop \in I} \norm {S_i}_{\map B {\HH_i} } } < \infty$
Hence:
- $\ds \bigoplus_{i \mathop \in I} T_i S_i$ is well-defined.
Let $f \in \HH$ and $i \in I$.
Then we have:
- $\ds \map {\paren {\paren {\bigoplus_{i \mathop \in I} T_i} \paren {\bigoplus_{i \mathop \in I} S_i} f} } i = T_i \map {\paren {\paren {\bigoplus_{i \mathop \in I} S_i} f} } i = T_i S_i \map f i = \map {\paren {\paren {\bigoplus_{i \mathop \in I} T_i S_i} f} } i$
by the definition of the direct sum.
Hence we have:
- $\ds \paren {\bigoplus_{i \mathop \in I} T_i} \paren {\bigoplus_{i \mathop \in I} S_i} f = \paren {\bigoplus_{i \mathop \in I} T_i S_i} f$
for each $f \in \HH$.
Hence:
- $\ds \paren {\bigoplus_{i \mathop \in I} T_i} \paren {\bigoplus_{i \mathop \in I} S_i} = \bigoplus_{i \mathop \in I} T_i S_i$
$\blacksquare$