Composition of Relations Preserves Subsets

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $A, B, S, T$ be relations as subsets of Cartesian products.

Let $A \subseteq B$ and $S \subset T$.


Then:

$A \circ S \subseteq B \circ T$

Proof

We have:

\(\ds \forall \tuple{x, y}: \, \) \(\ds \tuple{x, y} \in A \circ S\) \(\leadsto\) \(\ds \exists z : \tuple{x, z} \in S, \tuple{z, y} \in A\) Definition of Composite Relation
\(\ds \) \(\leadsto\) \(\ds \exists z : \tuple{x, z} \in T, \tuple{z, y} \in B\) Definition of Subset
\(\ds \) \(\leadsto\) \(\ds \tuple{x, y} \in B \circ T\) Definition of Composite Relation

By definition of subset:

$A \circ S \subseteq B \circ T$

$\blacksquare$