Compton Wavelength of Electron

From ProofWiki
Jump to navigation Jump to search

Theorem

The Compton wavelength of the electron is:

\(\ds \lambda_\E\) \(\approx\) \(\ds 2 \cdotp 42631 \, 02386 \, 7(73) \times 10^{-12} \, \mathrm m\)
\(\ds \) \(\approx\) \(\ds 2 \cdotp 42631 \, 02386 \, 7(73) \times 10^{-10} \, \mathrm {cm}\)


Symbol

$\lambda_\E$

The symbol for the Compton wavelength of the electron is $\lambda_\E$.


The $\LaTeX$ code for \(\lambda_\E\) is \lambda_\E .


Proof

By definition, the Compton wavelength $\lambda_\E$ of an electron is given as:

$\lambda_\E = \dfrac h {m_\E c}$

where:

$m_\E$ denotes the mass of the electron
$h$ denotes Planck's constant
$c$ denotes the speed of light.


Then we have:

\(\ds h\) \(=\) \(\ds 6 \cdotp 62607 \, 015 \times 10^{-34} \, \mathrm {J \, s}\) that is: joule seconds \(\quad\) Definition of Planck's Constant
\(\ds m_\E\) \(\approx\) \(\ds 9 \cdotp 10938 \, 37015 \, (28) \times 10^{-31} \, \mathrm {kg}\) that is: kilograms \(\quad\) Mass of Electron
\(\ds c\) \(=\) \(\ds 299 \, 792 \, 458 \, \mathrm {m \, s^{-1} }\) that is: metres per second \(\quad\) Definition of Speed of Light
\(\ds \leadsto \ \ \) \(\ds \lambda_\E\) \(\approx\) \(\ds \dfrac {6 \cdotp 62607 \, 015 \times 10^{-34} } {9 \cdotp 10938 \, 37015 \, (28) \times 10^{-31} \times 299 \, 792 \, 458} \, \mathrm m\)
\(\ds \) \(\approx\) \(\ds 2 \cdotp 42631 \, 02386 \, 7 (73) \times 10^{-12} \, \mathrm m\) \(\quad\) by calculation
\(\ds \) \(\approx\) \(\ds 2 \cdotp 42631 \, 02386 \, 7 (73) \times 10^{-10} \, \mathrm {cm}\) \(\quad\) by calculation

$\blacksquare$


Sources

which gives the mantissa as $2 \cdotp 426 \, 309 \, 6$ with an uncertainty of $\pm 74$ corresponding to the $2$ least significant figures