Condition for Points in Complex Plane to form Isosceles Triangle/Examples/1+2i, 4-2i, 1-6i
Jump to navigation
Jump to search
Examples of Use of Condition for Points in Complex Plane to form Isosceles Triangle
Let $A = z_1 = 1 + 2 i$, $B = z_2 = 4 - 2 i$ and $C = z_3 = 1 - 6 i$ represent on the complex plane the vertices of a triangle.
Then $\triangle ABC$ is isosceles, where $B$ is the apex.
Proof
By Condition for Points in Complex Plane to form Isosceles Triangle:
- $\triangle ABC$ is isosceles, where $A$ is the apex, if and only if $AB = AC$.
Hence:
\(\ds AB\) | \(=\) | \(\ds \cmod {z_1 - z_2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {\paren {1 + 2 i} - \paren {4 - 2 i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {\paren {1 - 4} + \paren {2 - \paren {-2} i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {-3 + 4 i}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {3^2 + 4^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 5\) |
Similarly:
\(\ds BC\) | \(=\) | \(\ds \cmod {z_2 - z_3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {\paren {4 - 2 i} - \paren {1 - 6 i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {\paren {4 - 1} + \paren {-2 - \paren {-6} i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {3 + 4 i}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {3^2 + 4^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 5\) |
So $AB = BC$ and so $\triangle ABC$ is isosceles.
Finally note that:
\(\ds AC\) | \(=\) | \(\ds \cmod {z_1 - z_3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {\paren {1 + 2 i} - \paren {1 - 6 i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {\paren {1 - 1} + \paren {2 - \paren {-6} i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {8 i}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 8\) |
demonstrating that $\triangle ABC$ is not equilateral.
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Graphical Representation of Complex Numbers. Vectors: $64$