Conditional Fatou's Lemma
Theorem
Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.
Let $X$ be an non-negative integrable random variable.
Let $\sequence {X_n}_{n \in \N}$ be an sequence of non-negative integrable random variables.
Let $\GG \subseteq \Sigma$ be a sub-$\sigma$-algebra.
For each $n \in \N$, let $\expect {X_n \mid \GG}$ be a version of the conditional expectation of $X_n$ conditioned on $\GG$.
Let $\ds \expect {\liminf_{n \mathop \to \infty} X_n \mid \GG}$ be a version of the conditional expectation of $X$ conditioned on $\GG$.
Then we have:
- $\ds \expect {\liminf_{n \mathop \to \infty} X_n \mid \GG} \le \liminf_{n \mathop \to \infty} \expect {X_n \mid \GG}$ almost everywhere.
Proof
From Conditional Expectation of Measurable Random Variable, we have:
- $\expect {X_n \mid \GG} = \expect {\expect {X_n \mid \GG} \mid \GG}$
It therefore suffices to show, from Conditional Expectation is Linear:
- $\ds \expect {\liminf_{n \mathop \to \infty} \expect {X_n \mid \GG} - \liminf_{n \mathop \to \infty} X_n \mid \GG} \ge 0$ almost everywhere.
From Condition for Conditional Expectation to be Almost Surely Non-Negative, we can show that:
- $\ds \expect {\paren {\liminf_{n \mathop \to \infty} \expect {X_n \mid \GG} - \liminf_{n \mathop \to \infty} X_n} \cdot 1_A} \ge 0$
for $A \in \GG$.
We indeed have, for each $A \in \GG$:
\(\ds \expect {\paren {\liminf_{n \mathop \to \infty} \expect {X_n \mid \GG} - \liminf_{n \mathop \to \infty} X_n} \cdot 1_A}\) | \(=\) | \(\ds \int_A \paren {\liminf_{n \mathop \to \infty} \expect {X_n \mid \GG} - \liminf_{n \mathop \to \infty} X_n} \rd \Pr\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_A \paren {\liminf_{n \mathop \to \infty} \expect {X_n \mid \GG} } \rd \Pr - \int_A \liminf_{n \mathop \to \infty} X_n \rd \Pr\) | Integral of Integrable Function is Additive: Corollary 2 | |||||||||||
\(\ds \) | \(\ge\) | \(\ds \int_A \paren {\liminf_{n \mathop \to \infty} \expect {X_n \mid \GG} } \rd \Pr - \liminf_{n \mathop \to \infty} \int_A X_n \rd \Pr\) | Fatou's Lemma for Integrals | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_A \paren {\liminf_{n \mathop \to \infty} \expect {X_n \mid \GG} } \rd \Pr - \liminf_{n \mathop \to \infty} \int_A \expect {X_n \mid \GG} \rd \Pr\) | Definition of Conditional Expectation on Sigma-Algebra | |||||||||||
\(\ds \) | \(\ge\) | \(\ds 0\) | Fatou's Lemma for Integrals |
$\blacksquare$
Source of Name
This entry was named for Pierre Joseph Louis Fatou.
Sources
- 1991: David Williams: Probability with Martingales ... (previous) ... (next): $9.7$: Properties of conditional expectation: a list