Conjugacy Classes of Quaternion Group
Jump to navigation
Jump to search
Theorem
Let $Q = \Dic 2 = \gen {a, b: a^4 = e, b^2 = a^2, a b a = b}$ be the quaternion group.
The conjugacy classes of $\Dic 2$ are:
- $\set e, \set {a^2}, \set {a, a^3}, \set {b, a^2 b}, \set {a b, a^3 b}$
Proof
From Center of Quaternion Group, we have:
- $\map Z {\Dic 2} = \set {e, a^2}$
Thus from Conjugacy Class of Element of Center is Singleton, $\set e$ and $\set {a^2}$ are two of those conjugacy classes.
By inspection of the Cayley table:
- $\begin {array} {r|rrrrrrrr} & e & a & a^2 & a^3 & b & a b & a^2 b & a^3 b \\ \hline e & e & a & a^2 & a^3 & b & a b & a^2 b & a^3 b \\ a & a & a^2 & a^3 & e & a b & a^2 b & a^3 b & b \\ a^2 & a^2 & a^3 & e & a & a^2 b & a^3 b & b & a b \\ a^3 & a^3 & e & a & a^2 & a^3 b & b & a b & a^2 b \\ b & b & a^3 b & a^2 b & a b & a^2 & a & e & a^3 \\ a b & a b & b & a^3 b & a^2 b & a^3 & a^2 & a & e \\ a^2 b & a^2 b & a b & b & a^3 b & e & a^3 & a^2 & a \\ a^3 b & a^3 b & a^2 b & a b & b & a & e & a^3 & a^2 \end {array}$
we investigate the remaining $6$ elements in turn, starting with $a$:
\(\ds a a a^{-1}\) | \(\) | \(\ds \) | \(\ds = a\) | |||||||||||
\(\ds a^2 a \paren {a^2}^{-1}\) | \(=\) | \(\ds a^2 a a^2 = a^5\) | \(\ds = a\) | |||||||||||
\(\ds a^3 a \paren {a^3}^{-1}\) | \(=\) | \(\ds a^3 a a = a^5\) | \(\ds = a\) | |||||||||||
\(\ds b a b^{-1}\) | \(=\) | \(\ds b a \paren {a^2 b} = b a^3 b\) | \(\ds = a^3\) | |||||||||||
\(\ds \paren {a b} a \paren {a b}^{-1}\) | \(=\) | \(\ds \paren {a b} a \paren {a^3 b} = b a^3 b\) | \(\ds = a^3\) | |||||||||||
\(\ds \paren {a^2 b} a \paren {a^2 b}^{-1}\) | \(=\) | \(\ds \paren {a^2 b} a b\) | \(\ds = a^3\) | |||||||||||
\(\ds \paren {a^3 b} a \paren {a^3 b}^{-1}\) | \(=\) | \(\ds \paren {a^3 b} a \paren {a b} = \paren {a^2 b} \paren {a b}\) | \(\ds = a^3\) |
So we have a conjugacy class:
- $\set {a, a^3}$
Investigating the remaining $4$ elements in turn, starting with $b$:
\(\ds a b a^{-1}\) | \(=\) | \(\ds a b a^3\) | \(\ds = a^2 b\) | |||||||||||
\(\ds a^2 b \paren {a^2}^{-1}\) | \(=\) | \(\ds a^2 b a^2\) | \(\ds = b\) | |||||||||||
\(\ds a^3 b \paren {a^3}^{-1}\) | \(=\) | \(\ds a^3 b a\) | \(\ds = a^2 b\) | |||||||||||
\(\ds b b b^{-1}\) | \(\) | \(\ds \) | \(\ds = b\) | |||||||||||
\(\ds \paren {a b} b \paren {a b}^{-1}\) | \(=\) | \(\ds \paren {a b} b \paren {a^3 b} = \paren {a b} a^3\) | \(\ds = a^2 b\) | |||||||||||
\(\ds \paren {a^2 b} b \paren {a^2 b}^{-1}\) | \(=\) | \(\ds \paren {a^2 b} b b = \paren {a^2 b} a^2\) | \(\ds = b\) | |||||||||||
\(\ds \paren {a^3 b} b \paren {a^3 b}^{-1}\) | \(=\) | \(\ds \paren {a^3 b} b \paren {a b} = \paren {a^3 b} a\) | \(\ds = a^2 b\) |
So we have a conjugacy class:
- $\set {b, a^2 b}$
Investigating the remaining $2$ elements, starting with $a b$:
\(\ds a \paren {a b} a^{-1}\) | \(=\) | \(\ds a \paren {a b} a^3 = a^2 b a^3\) | \(\ds = a^3 b\) |
We need go no further: the remaining elements $a b$ and $a^3 b$ are in the same conjugacy class:
- $\set {a b, a^3 b}$
Hence the result.
$\blacksquare$
Sources
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: Conjugacy, Normal Subgroups, and Quotient Groups: $\S 51 \alpha$