# Continuous Image of Compact Space is Compact/Corollary 3/Proof 2

Jump to navigation
Jump to search

## Corollary to Continuous Image of Compact Space is Compact

Let $S$ be a compact topological space.

Let $f: S \to \R$ be a continuous real-valued function.

Then $f$ attains its bounds on $S$.

## Proof

By Continuous Image of Compact Space is Compact, $f \left({S}\right)$ is compact.

From Compact Metric Space is Complete and Compact Metric Space is Totally Bounded, $f \left({S}\right)$ is complete and totally bounded.

A Totally Bounded Metric Space is Bounded.

Hence both the supremum and the infimum of $f \left({S}\right)$ exist in $\R$.

Because $f \left({S}\right)$ is complete:

- $\sup f \left({S}\right) \in f \left({S}\right)$

and:

- $\inf f \left({S}\right) \in f \left({S}\right)$

$\blacksquare$