Convergence of P-Series
Jump to navigation
Jump to search
Theorem
Let $p \in \C$ be a complex number.
Absolute Convergence if $\map \Re p > 1$
Let $\map \Re p > 1$.
Then the $p$-series:
- $\ds \sum_{n \mathop = 1}^\infty n^{-p}$
Divergence if $0 <\map \Re p \le 1$
Let $0 < \map \Re p \le 1$.
Then the $p$-series:
- $\ds \sum_{n \mathop = 1}^\infty n^{-p}$
Real Case
Let $p \in \R$ be a real number.
Then the $p$-series:
- $\ds \sum_{n \mathop = 1}^\infty n^{-p}$
is convergent if and only if $p > 1$.
Also see
The mapping $\ds p \mapsto \sum_{n \mathop = 1}^\infty n^{-p}$ is well-known as the Riemann zeta function.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): $p$-series
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): $p$-series