Convergent Real Sequence/Examples/n^2 - 1 over n^2 + 1
Jump to navigation
Jump to search
Example of Convergent Real Sequence
- $\ds \lim_{n \mathop \to \infty} \paren {\dfrac {n^2 - 1} {n^2 + 1} } = 1$
Proof
Let $\epsilon \in \R_{>0}$ be given.
The requirement is to find a value of $N \in \R$ such that:
- $\forall n > N: \size {\dfrac {n^2 - 1} {n^2 + 1} - 1} < \epsilon$
But we have:
\(\ds \size {\dfrac {n^2 - 1} {n^2 + 1} - 1}\) | \(=\) | \(\ds 1 - \dfrac {n^2 - 1} {n^2 + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 2 {n^2 + 1}\) |
Hence the requirement is now to find a value of $N \in \R$ such that:
- $\forall n > N: \dfrac 2 {n^2 + 1} < \epsilon$
From Reciprocal Function is Strictly Decreasing:
- $\dfrac 2 {n^2 + 1} < \epsilon \implies n^2 + 1 > \dfrac 2 \epsilon$
So choosing $N = \paren {\dfrac 2 \epsilon}^{1/2}$ we have that:
- $\forall n > N: n > \dfrac 1 \epsilon$
\(\ds \forall n > N: \, \) | \(\ds n^2 + 1\) | \(>\) | \(\ds n^2\) | |||||||||||
\(\ds \) | \(>\) | \(\ds N^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 2 \epsilon\) |
We have demonstrated that for $\epsilon \in \R_{>0}$ there exists $N \in \R$, that is: $N = \paren {\dfrac 2 \epsilon}^{1/2}$, such that:
- $\forall n > N: \size {\dfrac {n^2 - 1} {n^2 + 1} - 1} < \epsilon$
Hence the result:
- $\ds \lim_{n \mathop \to \infty} \paren {\dfrac {n^2 - 1} {n^2 + 1} } = 1$
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 4$: Convergent Sequences: Exercise $\S 4.6 \ (1)$