Convex Hull is Smallest Convex Set containing Set/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $X$ be a vector space over $\R$.

Let $U \subseteq X$ be non-empty.

Let $\map {\operatorname {conv} } U$ be the convex hull of $U$.

Let $K \subseteq X$ be a convex set with $U \subseteq K$.


Then:

$\map {\operatorname {conv} } U \subseteq K$


Proof

From the definition of the convex hull, we have:

$\ds \map {\operatorname {conv} } U = \set {\sum_{j \mathop = 1}^n \lambda_j u_j : n \in \N, \, u_j \in U \text { and } \lambda_j \in \R_{> 0} \text { for each } j, \, \sum_{j \mathop = 1}^n \lambda_j = 1}$

For each $n \in \N$, let $\map P n$ be the proposition:

for each $\lambda_1, \lambda_2, \ldots, \lambda_n \in \R_{> 0}$ with:
$\ds \sum_{i \mathop = 1}^n \lambda_i = 1$
and $u_1, u_2, \ldots, u_n \in U$, we have:
$\ds \sum_{i \mathop = 1}^n \lambda_i u_i \in K$

We will then have that, for each $n \in \N$, $u_1, u_2, \ldots, u_n \in U$ and $\lambda_1, \lambda_2, \ldots, \lambda_n \in \R_{> 0}$ with:

$\ds \sum_{i \mathop = 1}^n \lambda_i = 1$

we have:

$\ds \sum_{i \mathop = 1}^n \lambda_i u_i \in K$

That is:

$\map {\operatorname {conv} } U \subseteq K$

which was the requirement.

We proceed by induction.


Basis for the Induction

The case $n = 1$ is precisely the statement that:

$\lambda_1 u_1 \in K$

for all $u_1 \in U$ whenever $\lambda_1 = 1$.

That is:

$u_1 \in K$

whenever $u_1 \in U$.

This is precisely the statement that $U \subseteq K$, which is true by hypothesis.

This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.


So this is the induction hypothesis:

for each $\lambda_1, \lambda_2, \ldots, \lambda_k \in \R_{> 0}$ with:
$\ds \sum_{i \mathop = 1}^k \lambda_i = 1$
and $u_1, u_2, \ldots, u_k \in U$, we have:
$\ds \sum_{i \mathop = 1}^k \lambda_i u_i \in K$

from which it is to be shown that:

for each $\lambda_1, \lambda_2, \ldots, \lambda_{k + 1} \in \R_{> 0}$ with:
$\ds \sum_{i \mathop = 1}^{k + 1} \lambda_i = 1$
and $u_1, u_2, \ldots, u_{k + 1} \in U$, we have:
$\ds \sum_{i \mathop = 1}^{k + 1} \lambda_i u_i \in K$


Induction Step

Take $\lambda_1, \lambda_2, \ldots, \lambda_{k + 1} \in \R_{> 0}$ with:

$\ds \sum_{i \mathop = 1}^{k + 1} \lambda_i = 1$

and $u_1, u_2, \ldots, u_{k + 1} \in U$.

We appeal to the convexity of $K$.

Set:

$t = 1 - \lambda_{k + 1}$

Since we have:

$0 < \lambda_i < 1$

for each $i$, we have $0 < t < 1$.

For each $i \in \set {1, 2, \ldots, k}$ set:

$\ds \mu_i = \frac 1 t \lambda_i$

We then have:

\(\ds \sum_{i \mathop = 1}^k \mu_i\) \(=\) \(\ds \frac 1 t \sum_{i \mathop = 1}^k \lambda_i\)
\(\ds \) \(=\) \(\ds \frac 1 t \paren {\sum_{i \mathop = 1}^{k + 1} \lambda_i - \lambda_{k + 1} }\)
\(\ds \) \(=\) \(\ds \frac 1 t \paren {1 - \lambda_{k + 1} }\) since $\ds \sum_{i \mathop = 1}^{k + 1} \lambda_i = 1$
\(\ds \) \(=\) \(\ds \frac t t\)
\(\ds \) \(=\) \(\ds 1\)

and:

\(\ds \sum_{i \mathop = 1}^{k + 1} \lambda_i u_i\) \(=\) \(\ds \sum_{i \mathop = 1}^k \lambda_i u_i + \lambda_{k + 1} u_{k + 1}\)
\(\ds \) \(=\) \(\ds t \sum_{i \mathop = 1}^k \mu_i u_i + \paren {1 - t} u_{k + 1}\)

From the induction hypothesis, we have:

$\ds \sum_{i \mathop = 1}^k \mu_i u_i \in K$

Since $U \subseteq K$ from hypothesis, we have:

$\ds u_{k + 1} \in K$

So, since $K$ is convex, we have:

$\ds t \sum_{i \mathop = 1}^k \mu_i u_i + \paren {1 - t} u_{k + 1} \in K$

so:

$\ds \sum_{i \mathop = 1}^{k + 1} \lambda_i u_i \in K$

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.

$\blacksquare$