Cotangent of 15 Degrees

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cot 15 \degrees = \cot \dfrac {\pi} {12} = 2 + \sqrt 3$

where $\cot$ denotes cotangent.


Proof

\(\ds \cot 15^\circ\) \(=\) \(\ds \frac {\cos 15 \degrees} {\sin 15 \degrees}\) Cotangent is Cosine divided by Sine
\(\ds \) \(=\) \(\ds \frac {\frac {\sqrt 6 + \sqrt 2} 4} {\frac {\sqrt 6 - \sqrt 2} 4}\) Cosine of $15 \degrees$ and Sine of $15 \degrees$
\(\ds \) \(=\) \(\ds \frac {\sqrt 6 + \sqrt 2} {\sqrt 6 - \sqrt 2}\) simplifying
\(\ds \) \(=\) \(\ds \frac {\paren {\sqrt 6 + \sqrt 2}^2} {\paren {\sqrt 6 - \sqrt 2} \paren {\sqrt 6 + \sqrt 2} }\) multiplying top and bottom by $\sqrt 6 + \sqrt 2$
\(\ds \) \(=\) \(\ds \frac {6 + 2 \sqrt 6 \sqrt 2 + 2 } {6 - 2}\) multiplying out, and Difference of Two Squares
\(\ds \) \(=\) \(\ds \frac {8 + 4 \sqrt 3} 4\) simplifying
\(\ds \) \(=\) \(\ds 2 + \sqrt 3\) dividing top and bottom by $4$

$\blacksquare$


Sources