Count of All Permutations on n Objects

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set of $n$ objects.

Let $N$ be the number of permutations of $k$ objects from $S$, where $1 \le k \le N$.

Then:

$\ds N = n! \sum_{k \mathop = 0}^{n - 1} \dfrac 1 {k!}$


Sequence

The sequence $\sequence {s_n}$ defined as:

$\ds s_n = n! \sum_{k \mathop = 0}^{n - 1} \dfrac 1 {k!}$

begins:

$1, 4, 15, 64, 325, 1956, 13699, 109600, 986409, 9864100, \ldots$


Proof

The number of permutations on $k$ objects, from $n$ is denoted ${}^n P_k$.

From Number of Permutations:

${}^n P_k = \dfrac {n!} {\paren {n - k}!}$

Hence:

\(\ds N\) \(=\) \(\ds \sum_{k \mathop = 1}^n {}^n P_k\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^n \dfrac {n!} {\paren {n - k}!}\)
\(\ds \) \(=\) \(\ds \dfrac {n!} {\paren {n - 1}!} + \dfrac {n!} {\paren {n - 2}!} + \cdots + \dfrac {n!} {\paren {n - \paren {n - 1} }!} + \dfrac {n!} {\paren {n - n}!}\)
\(\ds \) \(=\) \(\ds \dfrac {n!} {\paren {n - 1}!} + \dfrac {n!} {\paren {n - 2}!} + \cdots + \dfrac {n!} {1!} + \dfrac {n!} {0!}\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^{n - 1} \dfrac {n!} {k!}\)
\(\ds \) \(=\) \(\ds n! \sum_{k \mathop = 0}^{n - 1} \dfrac 1 {k!}\)

$\blacksquare$


Examples

Even Integers from $\set {1, 2, 3, 4}$

Let $N$ be the number of even integers which can be made using one or more of the digits $1$, $2$, $3$ and $4$ no more than once each.

Then:

$N = 32$