Cube of Complex Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z = a + i b$ be a complex number.

Then its cube is given by:

$z^3 = a^3 - 3 a b^2 + i \paren {3 a^2 b - b^3}$


Proof

\(\ds z^3\) \(=\) \(\ds \paren {a + i b}^3\) by hypothesis
\(\ds \) \(=\) \(\ds \paren {a + i b}^2 \paren {a + i b}\) Definition of Cube (Algebra)
\(\ds \) \(=\) \(\ds \paren {a^2 - b^2 + i \paren {2 a b} } \paren {a + i b}\) Square of Complex Number
\(\ds \) \(=\) \(\ds \paren {\paren {a^2 - b^2} a - b \paren {2 a b} } + i \paren {\paren {a^2 - b^2} b + \paren {2 a b} a}\) Definition of Complex Multiplication
\(\ds \) \(=\) \(\ds \paren {a^3 - a b^2 - 2 a b^2} + i \paren {a^2 b - b^3 + 2 a^2 b}\) multiplying out
\(\ds \) \(=\) \(\ds a^3 - 3 a b^2 + i \paren {3 a^2 b - b^3}\) gathering like terms

$\blacksquare$


Sources