Cycle Decomposition/Examples/Permutation in S9/Mistake
Jump to navigation
Jump to search
Source Work
1996: John F. Humphreys: A Course in Group Theory:
- Chapter $9$: Permutations:
- Example $9.6$
Mistake
- The cycle decomposition for the permutation
- $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 4 & 6 & 2 & 8 & 9 & 7 & 5 & 3 \end{pmatrix}$
- is $\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 & 9 \end{pmatrix} \begin{pmatrix} 5 & 8 \end{pmatrix}$. It is usual to omit the cycles of length $1$, those integers fixed by $\pi$, and so $\pi$ is abbreviated to $\begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 & 9 \end{pmatrix} \begin{pmatrix} 5 & 8 \end{pmatrix}$.
Correction
The cycle decomposition given above includes the $\begin{pmatrix} 1 \end{pmatrix}$, but for some reason omits the $\begin{pmatrix} 7 \end{pmatrix}$.
If you are going to include the one, then you also need to include the other.
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $9$: Permutations: Example $9.6$