Definite Integral over Unit Square of Logarithm of x minus Logarithm of y over x minus y

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^1 \int_0^1 \frac {\ln x - \ln y} {x - y} \rd x \rd y = 2 \map \zeta 2$


Proof

\(\ds \int_0^1 \int_0^1 \dfrac {\ln x - \ln y} {x - y} \rd x \rd y\) \(=\) \(\ds \int_0^1 \int_0^1 \dfrac {\map \ln {\dfrac x y} } {x - y} \rd x \rd y\) Difference of Logarithms
\(\ds \) \(=\) \(\ds 2 \int_0^1 \int_0^x \dfrac {\map \ln {\dfrac x y} } {x - y} \rd x \rd y\) symmetry about the line $y = x$
\(\ds \) \(=\) \(\ds 2 \int_0^1 \int_0^1 \dfrac {\map \ln {\dfrac x {x t} } } {x - x t} \rd x \paren {x \rd t}\) $y \to x t$ and $\rd y \to x \rd t$
\(\ds \) \(=\) \(\ds 2 \int_0^1 \int_0^1 \dfrac {\map \ln {\dfrac 1 t } } {\paren {1 - t} } \rd x \rd t\) canceling the $x$
\(\ds \) \(=\) \(\ds 2 \int_0^1 \dfrac {\map \ln {\dfrac 1 t } } {\paren {1 - t} } \rd t \bigintlimits x 0 1\)
\(\ds \) \(=\) \(\ds -2 \int_0^1 \dfrac {\map \ln t } {\paren {1 - t} } \rd t\) Logarithm of Reciprocal
\(\ds \) \(=\) \(\ds -2 \int_1^0 \dfrac {\map \ln {1 - x} } x \paren {-\rd x}\) $\paren {1 - t} \to x$ and $-\rd t \to \rd x$
\(\ds \) \(=\) \(\ds -2 \int_0^1 \dfrac {\map \ln {1 - x} } x \rd x\) reversing limits of integration
\(\ds \) \(=\) \(\ds 2 \map {\Li_2} 1\) Definition of Spence's Function
\(\ds \) \(=\) \(\ds 2 \sum_{n \mathop = 1}^\infty \frac {1^n} {n^2}\) Power Series Expansion for Spence's Function
\(\ds \) \(=\) \(\ds 2 \map \zeta 2\) Definition of Riemann Zeta Function

$\blacksquare$


Sources