Definite Integral to Infinity of Power of x by Exponential of -a x^2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^\infty x^m e^{-a x^2} \rd x = \frac {\map \Gamma {\paren {m + 1}/2} } {2 a^{\paren {m + 1}/2} }$

where $m$ and $a$ are real numbers with $m > -1$ and $a > 0$.


Proof

\(\ds \int_0^\infty x^m e^{-a x^2} \rd x\) \(=\) \(\ds \int_0^\infty \frac 1 {2 \sqrt t} \paren {\sqrt t}^m e^{-a t} \rd t\) substituting $t = x^2$
\(\ds \) \(=\) \(\ds \frac 1 2 \int_0^\infty t^{\paren {\paren {m + 1}/2} - 1} e^{-a t} \rd t\)
\(\ds \) \(=\) \(\ds \frac {\map \Gamma {\paren {m + 1}/2} } {2 a^{\paren {m + 1}/2} }\) Laplace Transform of Real Power

$\blacksquare$


Sources