Definition:Affinely Dependent/Independent

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\R^n$ be the $n$-dimensional real Euclidean space.

Let $X = \set{x_1, \dots, x_r}$ be a finite subset of $\R^n$.


The subset $X$ is affinely independent if no element $x \in X$ is affinely dependent on $X \setminus \set x$

Also see

Sources