Definition:Affinely Dependent/Independent
Jump to navigation
Jump to search
Definition
Let $\R^n$ be the $n$-dimensional real Euclidean space.
Let $X = \set {x_1, \dots, x_r}$ be a finite subset of $\R^n$.
The subset $X$ is affinely independent if and only if no element $x \in X$ is affinely dependent on $X \setminus \set x$.
Also see
Sources
- 1976: Dominic Welsh: Matroid Theory ... (previous) ... (next) Chapter $1.$ $\S 3.$ Examples of Matroids