Definition:Banach Algebra

From ProofWiki
Jump to navigation Jump to search

Definition

Let $R$ be either the real numbers $\R$ or the complex numbers $\C$..

Let $A$ be an algebra over $R$ which is also a Banach space.


Then $A$ is a Banach algebra if and only if:

$\forall a, b \in R: \norm {a b} \le \norm a \norm b$

where $\norm {\, \cdot \,}$ denotes the norm on $A$.


Source of Name

This entry was named for Stefan Banach.


Sources