Definition:Free Module on Set/Canonical Basis
< Definition:Free Module on Set(Redirected from Definition:Canonical Basis of Free Module on Set)
Jump to navigation
Jump to search
Definition
Let $R$ be a ring with unity.
Let $\ds R^{\paren I} = \bigoplus_{i \mathop \in I} R$ be the free $R$-module on $I$.
The $j$th canonical basis element is the element
- $e_j = \family {\delta_{i j} }_{i \mathop \in I} \in R^{\paren I}$
where $\delta$ denotes the Kronecker delta.
The canonical basis of $R^{\paren I}$ is the indexed family $\family {e_j}_{j \mathop \in I}$.