Definition:Permutation on n Letters/Cycle Notation/Canonical Representation
< Definition:Permutation on n Letters | Cycle Notation(Redirected from Definition:Canonical Representation of Permutation on n Letters)
Jump to navigation
Jump to search
Definition
The permutation:
- $\begin {pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end {pmatrix}$
can be expressed in cycle notation as:
- $\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix}$
or as:
- $\begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$
or as:
- $\begin{pmatrix} 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \end{pmatrix}$
etc.
However, only the first is conventional.
This is known as the canonical representation.
Sources
- 1968: Ian D. Macdonald: The Theory of Groups ... (previous) ... (next): Appendix: Elementary set and number theory