# Definition:Degree of Polynomial/Ring

Jump to navigation
Jump to search

## Definition

The validity of the material on this page is questionable.In particular: ill-definedYou can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by resolving the issues.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Questionable}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

Let $\struct {R, +, \circ}$ be a ring.

Let $\struct {S, +, \circ}$ be a subring of $R$.

Let $x \in R$.

Let $\ds P = \sum_{j \mathop = 0}^n \paren {r_j \circ x^j} = r_0 + r_1 \circ x + \cdots + r_n \circ x^n$ be a polynomial in the element $x$ over $S$ such that $r_n \ne 0$.

Then the **degree of $P$** is $n$.

The **degree of $P$** can be denoted $\map \deg P$ or $\partial P$.

## Sources

This page has been identified as a candidate for refactoring of medium complexity.In particular: this source is about polynomials (defined as sequences), not about polynomials in elementsUntil this has been finished, please leave
`{{Refactor}}` in the code.
Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Refactor}}` from the code. |

- 1970: B. Hartley and T.O. Hawkes:
*Rings, Modules and Linear Algebra*... (previous) ... (next): $\S 3.2$: Polynomial rings: Definition $3.6$