Definition:Derivation of Germs of Smooth Functions
Jump to navigation
Jump to search
Definition
Let $M$ be a smooth manifold with or without boundary.
Let $p \in M$.
Let $\map {C_p^\infty} M$ be the set of all germs of smooth functions at $p$.
Let $\sqbrk{f}_p \in \map {C_p^\infty} M$ denote the germs of the smooth functions $f$ at $p$.
Then a derivation of $\map {C_p^\infty} M$ is a linear map
$\delta: \map {C_p^\infty} M \to \R$ satisfying the Leibniz law:
- $\delta \sqbrk{fg}_p = \map f p \delta \sqbrk{f}_p + \delta \sqbrk{g}_p \; \map g p$
Also see
Sources
- 2013: John M. Lee: Introduction to Smooth Manifolds (2nd ed.): Chapter $3$: Tangent Vectors: $\S$ Alternative Definitions of the Tangent Space