# Definition:Differentiable Mapping/Real-Valued Function/Point/Definition 1

Jump to navigation
Jump to search

## Definition

Let $U$ be an open subset of $\R^n$.

Let $f: U \to \R$ be a real-valued function.

Let $x \in U$.

$f$ is **differentiable at $x$** if and only if there exist $\alpha_1, \ldots, \alpha_n \in \R$ and a real-valued function $r: U \setminus \set x \to \R$ such that:

- $(1):\quad \map f {x + h} = \map f x + \alpha_1 h_1 + \cdots + \alpha_n h_n + \map r h\cdot h$
- $(2):\quad \displaystyle \lim_{h \mathop \to 0} \map r h = 0$