Definition:Differentiable Mapping/Real Function/Point/Definition 2
Jump to navigation
Jump to search
Definition
Let $f$ be a real function defined on an open interval $\openint a b$.
Let $\xi$ be a point in $\openint a b$.
$f$ is differentiable at the point $\xi$ if and only if the limit:
- $\ds \lim_{h \mathop \to 0} \frac {\map f {\xi + h} - \map f \xi} h$
exists.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): differentiable
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): differentiable