# Definition:Directed Walk

## Definition

Let $G = \left({V, A}\right)$ be a directed graph.

A **directed walk** in $G$ is a finite or infinite sequence $\left\langle{x_k}\right\rangle$ such that:

- $\forall k \in \N: k + 1 \in \operatorname{Dom} \left\langle{x_k}\right\rangle: \left({x_k, x_{k+1} }\right) \in A$