Definition:Finer Topology

From ProofWiki
Jump to: navigation, search


Let $S$ be a set.

Let $\tau_1$ and $\tau_2$ be topologies on $S$.

Let $\tau_1 \supseteq \tau_2$.

Then $\tau_1$ is said to be finer than $\tau_2$.

This can be expressed as:

$\tau_1 \ge \tau_2 := \tau_1 \supseteq \tau_2$

Strictly Finer

Let $\tau_1 \supsetneq \tau_2$.

$\tau_1$ is said to be strictly finer than $\tau_2$.

This can be expressed as:

$\tau_1 > \tau_2 := \tau_1 \supsetneq \tau_2$

Also known as

The terms stronger or larger are often encountered, meaning the same thing as finer.

Unfortunately, the term weaker is also sometimes encountered, meaning exactly the same thing.

To remove any ambiguity as to which one is meant, it is recommended that finer be used exclusively.

Also see