Definition:Generalized Sum/Absolute Net Convergence

From ProofWiki
Jump to navigation Jump to search

Definition

Let $V$ be a Banach space.

Let $\family {v_i}_{i \mathop \in I}$ be an indexed subset of $V$.


Then $\displaystyle \sum \set {v_i: i \in I}$ converges absolutely if and only if $\displaystyle \sum \set {\norm {v_i}: i \mathop \in I}$ converges.

This nomenclature is appropriate as we have Absolutely Convergent Generalized Sum Converges.