Definition:Holomorphic Function

From ProofWiki
Jump to navigation Jump to search



Definition

Complex Function

Let $U \subseteq \C$ be an open set.

Let $f : U \to \C$ be a complex function.


Then $f$ is holomorphic in $U$ if and only if $f$ is differentiable at each point of $U$.

We also say that $f$ is complex-differentiable in $U$.


Vector-Valued Function




Also defined as

A holomorphic function is sometimes defined as continuously differentiable.

By Holomorphic Function is Continuously Differentiable, the two are equivalent.


Also known as

Some authors refer to a holomorphic function on an open set of $\C$ as an analytic (complex) function.

This is because, by Holomorphic Function is Analytic, they are equivalent.



Sometimes the term regular function can be seen, which means the same thing.


Also see

  • Results about holomorphic functions can be found here.