Definition:Integral Transform/Image Space

From ProofWiki
Jump to navigation Jump to search


Let $\map F p$ be an integral transform:

$\ds \map F p = \int_a^b \map f x \map K {p, x} \rd x$

Let $T: f \to F$ be the integral operator corresponding to $\map F p$.

The domain of $p$ is known as the image space of $T$.

Also known as

The image space of $T$ can also be seen hyphenated: image-space.