Definition:Improper Integral/Half Open Interval
Jump to navigation
Jump to search
Definition
Open Above
Let $f$ be a real function which is continuous on the half open interval $\hointr a b$.
Then the improper integral of $f$ over $\hointr a b$ is defined as:
- $\ds \int_a^{\mathop \to b} \map f t \rd t := \lim_{\gamma \mathop \to b^-} \int_a^\gamma \map f t \rd t$
Open Below
Let $f$ be a real function which is continuous on the half open interval $\hointl a b$.
Then the improper integral of $f$ over $\hointl a b$ is defined as:
- $\ds \int_{\mathop \to a}^b \map f t \rd t := \lim_{\gamma \mathop \to a^+} \int_\gamma^b \map f t \rd t$