Definition:Join Semilattice/Definition 1

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\left({S, \preceq}\right)$ be an ordered set.

Suppose that for all $a, b \in S$:

$a \vee b \in S$

where $a \vee b$ is the join of $a$ and $b$ with respect to $\preceq$.


Then the ordered structure $\left({S, \vee, \preceq}\right)$ is called a join semilattice.


That it is indeed an ordered structure is proved on Join Semilattice is Ordered Structure.

That a join semilattice is a semilattice is proved on Join Semilattice is Semilattice.


Also see