Definition:Reduced Residue System/Least Positive Residue

From ProofWiki
Jump to: navigation, search


Let $\left[\!\left[{a}\right]\!\right]_m$ be the residue class of $a$ (modulo $m$).

Let $r$ be the smallest non-negative integer in $\left[\!\left[{a}\right]\!\right]_m$.

Then from Integer is Congruent to Integer less than Modulus:

$0 \le r < m$


$a \equiv r \pmod m$

Then $r$ is called the least positive residue of $a$ (modulo $m$).

Also known as

Some sources call this the common residue.

Also see