Definition:Lemniscate of Bernoulli/Parametric Definition
Definition
The lemniscate of Bernoulli is the curve defined by the parametric equation:
- $\begin{cases} x = \dfrac {a \sqrt 2 \cos t} {\sin^2 t + 1} \\ \\ y = \dfrac {a \sqrt 2 \cos t \sin t} {\sin^2 t + 1} \end{cases}$
Focus
Each of the two points $P_1$ and $P_2$ can be referred to as a focus of the lemniscate.
Lobe
Each of the two loops that constitute the lemniscate can be referred to as a lobe of the lemniscate.
Major Axis
The line $P_1 P_2$ is the major axis of the lemniscate.
Major Semiaxis
Each of the lines $O P_1$ and $O P_2$ is a major semiaxis of the lemniscate.
Also see
Source of Name
This entry was named for Jacob Bernoulli.
Historical Note
The lemniscate of Bernoulli was investigated in some depth by Jacob Bernoulli, from whom it was given its name.
Linguistic Note
The word lemniscate comes from the Latin word lemniscus, which means pendant ribbon.
The word may ultimately derive from the Latin lēmniscātus, which means decorated with ribbons.
This may in turn come from the ancient Greek island of Lemnos where ribbons were worn as decorations.
Sources
- Weisstein, Eric W. "Lemniscate." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Lemniscate.html