Definition:Continuous Map (Locale)/Localic Mapping
< Definition:Continuous Map (Locale)(Redirected from Definition:Localic Mapping)
Jump to navigation
Jump to search
Definition
Let $L_1 = \struct{S_1, \preceq_1}, L_2 = \struct{S_2, \preceq_2}$ be locales.
Let $f : L_1 \to L_2$ be a continuous map.
That is, $f$ is the dual morphism of a frame homomorphism $\loweradjoint f : L_2 \to L_1$.
The frame homomorphism $\loweradjoint f : L_2 \to L_1$ corresponding to $f$ is a lower adjoint of a Galois connection $\struct{\upperadjoint f, \loweradjoint f}$.
The upper adjoint $\upperadjoint f : L_1 \to L_2$ of $\struct{\upperadjoint f, \loweradjoint f}$ is called a localic mapping.
Also see
Sources
- 2012: Jorge Picado and Aleš Pultr: Frames and Locales: Chapter II: Frames and Locales. Spectra, $\S 2.2$