Definition:Minor of Determinant/Example

From ProofWiki
Jump to: navigation, search

Example of Minor of Determinant

Let $D$ be the determinant defined as:

$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$


Then:

$D \left({1, 2 \mid 1, 3}\right) = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$


Note that $D \left({1, 2 \mid 1, 3}\right)$ can also be denoted as $D_{3 2}$.