# Definition:Nowhere Dense

## Definition

Let $T = \left({S, \tau}\right)$ be a topological space.

Let $H \subseteq S$.

### Definition 1

$H$ is **nowhere dense** in $T$ if and only if:

- $\left({H^-}\right)^\circ = \varnothing$

where $H^-$ denotes the closure of $H$ and $H^\circ$ denotes its interior.

### Definition 2

$H$ is **nowhere dense** in $T$ if and only if:

where $H^-$ denotes the closure of $H$.

## Also see

- Results about
**topological denseness**can be found here.