Definition:Real Interval/Unit Interval/Open
< Definition:Real Interval | Unit Interval(Redirected from Definition:Open Unit Interval)
Jump to navigation
Jump to search
Definition
The open interval between $0$ and $1$ is referred to as the open unit interval.
- $\left({0 \,.\,.\, 1}\right) = \left\{ {x \in \R: 0 < x < 1}\right\}$
Notation
An arbitrary (real) interval is frequently denoted $\mathbb I$.
Sources which use the $\textbf {boldface}$ font for the number sets $\N, \Z, \Q, \R, \C$ tend also to use $\mathbf I$ for this entity.
Some sources merely use the ordinary $\textit {italic}$ font $I$.
Some sources prefer to use $J$.
Wirth Interval Notation
The notation used on this site to denote a real interval is a fairly recent innovation, and was introduced by Niklaus Emil Wirth:
\(\ds \openint a b\) | \(:=\) | \(\ds \set {x \in \R: a < x < b}\) | Open Real Interval | |||||||||||
\(\ds \hointr a b\) | \(:=\) | \(\ds \set {x \in \R: a \le x < b}\) | Half-Open (to the right) Real Interval | |||||||||||
\(\ds \hointl a b\) | \(:=\) | \(\ds \set {x \in \R: a < x \le b}\) | Half-Open (to the left) Real Interval | |||||||||||
\(\ds \closedint a b\) | \(:=\) | \(\ds \set {x \in \R: a \le x \le b}\) | Closed Real Interval |
The term Wirth interval notation has consequently been coined by $\mathsf{Pr} \infty \mathsf{fWiki}$.