Definition:Partial Function Equality
Jump to navigation
Jump to search
Definition
Let $g: \N^k \to \N$ and $h: \N^k \to \N$ be partial functions.
We write:
- $\map g {n_1, n_2, \ldots, n_k} \approx \map h {n_1, n_2, \ldots, n_k}$
if and only if either:
- both $\map g {n_1, n_2, \ldots, n_k}$ and $\map h {n_1, n_2, \ldots, n_k}$ are defined and equal
or:
- neither $\map g {n_1, n_2, \ldots, n_k}$ nor $\map h {n_1, n_2, \ldots, n_k}$ are defined.
That is, if and only if $\map g {n_1, n_2, \ldots, n_k} = \map h {n_1, n_2, \ldots, n_k}$ wherever either are defined.
Thus, $g$ is equal to $h$, and we can write $g = h$, if and only if:
- $\forall x \in \N^k: \map g x \approx \map h x$