# Definition:Pascal's Triangle/Lesser Diagonal

## Definition

Consider Pascal's Triangle:

$\begin{array}{r|rrrrrrrrrr} n & \binom n 0 & \binom n 1 & \binom n 2 & \binom n 3 & \binom n 4 & \binom n 5 & \binom n 6 & \binom n 7 & \binom n 8 & \binom n 9 & \binom n {10} & \binom n {11} & \binom n {12} \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 1 & 3 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 5 & 1 & 5 & 10 & 10 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 1 & 6 & 15 & 20 & 15 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 7 & 1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 & 0 & 0 & 0 & 0 & 0 \\ 8 & 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 & 0 & 0 & 0 & 0 \\ 9 & 1 & 9 & 36 & 84 & 126 & 126 & 84 & 36 & 9 & 1 & 0 & 0 & 0 \\ 10 & 1 & 10 & 45 & 120 & 210 & 252 & 210 & 120 & 45 & 10 & 1 & 0 & 0 \\ 11 & 1 & 11 & 55 & 165 & 330 & 462 & 462 & 330 & 165 & 55 & 11 & 1 & 0 \\ 12 & 1 & 12 & 66 & 220 & 495 & 792 & 924 & 792 & 495 & 220 & 66 & 12 & 1 \\ \end{array}$

The $n$th lesser diagonal of Pascal's triangle consists of the entries $\dbinom {n - m} m$ for $m \ge 0$, leading up and to the right from the entry in row $n$ and column $0$:

$\dbinom n 0, \dbinom {n - 1} 1, \dbinom {n - 2} 2, \dbinom {n - 3} 3, \ldots$

## Also known as

The lesser diagonals are also known as the shallow diagonals, arising from the common depiction of Pascal's triangle in its symmetrical form: