Definition:Permutation on Polynomial

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\map f {x_1, x_2, \ldots, x_n}$ denote a polynomial in $n$ variables $x_1, x_2, \ldots, x_n$.

Let $S_n$ denote the symmetric group on $n$ letters.

Let $\pi, \rho \in S_n$.


Then $\pi * f$ is the polynomial obtained by applying the permutation $\pi$ to the subscripts on the variables of $f$.


This is called the permutation on the polynomial $f$ by $\pi$, or the $f$-permutation by $\pi$.


Also known as

This is also called the permutation of the polynomial.


Examples

Polynomial on 3 Variables

Consider the polynomial on $3$ variables:

$\map f {x_1, x_2, x_3} = {x_1}^2 + 2 x_1 x_2 = 4 x_1 x_2 {x_3}^2$

Let $\rho := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ be a permutation on the Symmetric Group on 3 Letters $S_3$.


Then:

$\rho \circ f = {x_2}^2 + 2 x_2 x_3 = 4 x_2 x_3 {x_1}^2$


Also see

  • Results about permutations on polynomials can be found here.


Sources